Project 3268: A. Ziegler. 2019. Combined visualization of echinoderm hard and soft parts using contrast-enhanced micro-computed tomography. Zoosymposia. 15 (1):172-191.
Specimen: Echinocyamus pusillus (O. F. Müller, 1776) (CAS/IZ:112655)
View: Aboral

Abstract

Recent studies have shown that micro-computed tomography (μCT) must be considered one of the most suitable techniques for the non-invasive, three-dimensional (3D) visualization of metazoan hard parts. In addition, μCT can also be used to visualize soft part anatomy non-destructively and in 3D. In order to achieve soft tissue contrast using μCT based on X-ray attenuation, fixed specimens must be immersed in staining solutions that include heavy metals such as silver (Ag), molybdenum (Mo), osmium (Os), lead (Pb), or tungsten (W). However, while contrast enhancement has been successfully applied to specimens pertaining to various higher metazoan taxa, echinoderms have thus far not been analyzed using this approach. In order to demonstrate that this group of marine invertebrates is suitable for contrast-enhanced μCT as well, the present study provides results from an application of this technique to representative species from all five extant higher echinoderm taxa. To achieve soft part contrast, freshly fixed and museum specimens were immersed in an ethanol solution containing phosphotungstic acid and then scanned using a high-resolution desktop μCT system. The acquired datasets show that the combined visualization of echinoderm soft and hard parts can be readily accomplished using contrast-enhanced μCT in all extant echinoderm taxa. The results are compared with μCT data obtained using unstained specimens, with conventional histological sections, and with data previously acquired using magnetic resonance imaging, a technique known to provide excellent soft tissue contrast despite certain limitations. The suitability for 3D visualization and modeling of datasets gathered using contrast-enhanced μCT is illustrated and applications of this novel approach in echinoderm research are discussed.


Read the article »

Article DOI: 10.11646/zoosymposia.15.1.19

Project DOI: 10.7934/P3268, http://dx.doi.org/10.7934/P3268
This project contains
  • 54 Media
  • 8 Taxa
  • 11 Specimens
Total size of project's media files: 239.56M

Download Project SDD File
Currently Viewing:
MorphoBank Project 3268

    Authors' Institutions

    • Rheinische Friedrich-Wilhelms-Universität Bonn (University of Bonn)



    Members

    member name taxa specimens media media
    notes
    Alexander Ziegler
    Project Administrator
    8115454


    Project has no matrices defined.



    Project views

    type number of views Individual items viewed (where applicable)
    Total project views31647
    Project overview1192
    Media views20257Media search (2382 views); M594772 (340 views); M594779 (346 views); M594757 (354 views); M594761 (345 views); M594783 (301 views); M594754 (322 views); M594740 (352 views); M594741 (356 views); M594742 (361 views); M594743 (345 views); M594744 (324 views); M594745 (341 views); M594746 (355 views); M594747 (337 views); M594748 (343 views); M594749 (333 views); M594750 (339 views); M594751 (329 views); M594752 (367 views); M594753 (337 views); M594755 (348 views); M594756 (344 views); M594758 (344 views); M594759 (338 views); M594760 (350 views); M594762 (339 views); M594763 (339 views); M594764 (346 views); M594765 (340 views); M594766 (337 views); M594767 (331 views); M594768 (341 views); M594769 (328 views); M594770 (347 views); M594771 (348 views); M594773 (344 views); M594774 (350 views); M594775 (341 views); M594776 (341 views); M594777 (338 views); M594778 (329 views); M594780 (339 views); M594781 (327 views); M594782 (325 views); M594784 (295 views); M595307 (313 views); M595308 (303 views); M595309 (324 views); M595310 (301 views); M595312 (287 views); M595313 (258 views); M595314 (273 views); M595315 (260 views); M595316 (280 views);
    Taxon list2540
    Specimen list5424
    Views for media list1690
    Bibliography537
    Documents list7




    Project downloads

    type number of downloads Individual items downloaded (where applicable)
    Total downloads from project144
    Project downloads142
    Media downloads2M595309 (1 download); M594741 (1 download);