Project 3268: A. Ziegler. 2019. Combined visualization of echinoderm hard and soft parts using contrast-enhanced micro-computed tomography. Zoosymposia. 15:172-191.
Specimen: Echinocyamus pusillus (CAS/IZ:112655)
View: Aboral

Abstract

Recent studies have shown that micro-computed tomography (μCT) must be considered one of the most suitable techniques for the non-invasive, three-dimensional (3D) visualization of metazoan hard parts. In addition, μCT can also be used to visualize soft part anatomy non-destructively and in 3D. In order to achieve soft tissue contrast using μCT based on X-ray attenuation, fixed specimens must be immersed in staining solutions that include heavy metals such as silver (Ag), molybdenum (Mo), osmium (Os), lead (Pb), or tungsten (W). However, while contrast enhancement has been successfully applied to specimens pertaining to various higher metazoan taxa, echinoderms have thus far not been analyzed using this approach. In order to demonstrate that this group of marine invertebrates is suitable for contrast-enhanced μCT as well, the present study provides results from an application of this technique to representative species from all five extant higher echinoderm taxa. To achieve soft part contrast, freshly fixed and museum specimens were immersed in an ethanol solution containing phosphotungstic acid and then scanned using a high-resolution desktop μCT system. The acquired datasets show that the combined visualization of echinoderm soft and hard parts can be readily accomplished using contrast-enhanced μCT in all extant echinoderm taxa. The results are compared with μCT data obtained using unstained specimens, with conventional histological sections, and with data previously acquired using magnetic resonance imaging, a technique known to provide excellent soft tissue contrast despite certain limitations. The suitability for 3D visualization and modeling of datasets gathered using contrast-enhanced μCT is illustrated and applications of this novel approach in echinoderm research are discussed.


Read the article »

Article DOI: http://dx.doi.org/10.11646/zoosymposia.15.1.19

Project DOI: 10.7934/P3268, http://dx.doi.org/10.7934/P3268
This project contains
  • 54 Media
  • 8 Taxa
  • 11 Specimens
Total size of project's media files: 239.56M

Download Project SDD File
Currently Viewing:
MorphoBank Project 3268

    Authors' Institutions

    • Rheinische Friedrich-Wilhelms-Universität Bonn (University of Bonn)



    Members

    member name taxa specimens media media
    notes
    Alexander Ziegler
    Project Administrator
    8115454


    Project has no matrices defined.



    Project views

    type number of views Individual items viewed (where applicable)
    Total project views10306
    Project overview454
    Media views6711Media search (892 views); M594772 (116 views); M594779 (123 views); M594757 (111 views); M594761 (116 views); M594783 (87 views); M594754 (112 views); M594740 (115 views); M594741 (114 views); M594742 (121 views); M594743 (116 views); M594744 (106 views); M594745 (106 views); M594746 (113 views); M594747 (108 views); M594748 (110 views); M594749 (114 views); M594750 (113 views); M594751 (114 views); M594752 (113 views); M594753 (110 views); M594755 (115 views); M594756 (109 views); M594758 (106 views); M594759 (108 views); M594760 (118 views); M594762 (111 views); M594763 (110 views); M594764 (111 views); M594765 (114 views); M594766 (111 views); M594767 (111 views); M594768 (109 views); M594769 (117 views); M594770 (111 views); M594771 (115 views); M594773 (107 views); M594774 (116 views); M594775 (115 views); M594776 (115 views); M594777 (118 views); M594778 (111 views); M594780 (111 views); M594781 (105 views); M594782 (90 views); M594784 (87 views); M595307 (89 views); M595308 (95 views); M595309 (104 views); M595310 (93 views); M595312 (94 views); M595313 (86 views); M595314 (91 views); M595315 (88 views); M595316 (90 views);
    Taxon list847
    Specimen list1657
    Views for media list472
    Bibliography165




    Project downloads

    type number of downloads Individual items downloaded (where applicable)
    Total downloads from project82
    Project downloads81
    Media downloads1M595309 (1 download);